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My ultimate goal is to create a multisensory perception system that learns from sight, sound, and
touch to physically interact with its environment. So far, my focus has been on creating computer
vision methods that learn from other sensory modalities.

Today, computer vision methods need human supervision, such as object labels, to learn about
the world. A major goal of the research community has been to remove the need for this supervision—
creating systems that, instead, teach themselves by analyzing unlabeled images. This focus on learning
from vision alone, however, is likely making the perception problem harder, not easier! Humans, by
comparison, have access to many sensory streams, and they learn from associations between senses.
When a child eats an apple, for instance, she’ll not only taste it—she’ll also hear it crunch, see its shiny
skin, and feel its smooth surface [15]. Psychologists have suggested that these co-occurring sensations
provide her with “self-supervision” [5]: that after her snack, she’ll associate shininess with smoothness,
and crunching with pulp. Vision trains hearing, touch trains vision, etc.

Inspired by this idea, I’ve developed computational models that learn about the world by finding
structure in multimodal sensation, and that use what they learn for “downstream” applications.
In my research, these have primarily been computer vision applications, such as object and action
recognition, but I’ve also been motivated by machine hearing and robotic manipulation—domains
where human-labeled data is often scarce, but unlabeled multimodal data is plentiful.

1 Multimodal perception

Figure 1: What sound do these objects make when you hit
them with a drumstick? Our model learns about material
properties by predicting “visually indicated” sounds from
silent videos.

Learning sight from sound In [13], I used
sound produced by physical interactions to train
a computer vision model about material proper-
ties. Material recognition is usually posed as a
supervised learning problem: someone annotates
a photo by hand—say, by assigning labels like
hard or soft to each object—and then trains a
model to predict these labels. Instead of having
the computer predict labels, I ask it to answer
a question that nonetheless requires an under-
standing of material properties: what would this
object sound like if you hit it with a drumstick? I
trained a model to predict soundtracks for silent
videos in which a human physically interacted with a scene by hitting and scratching objects with a
drumstick. After training, the sound predictions convey material properties of the objects that were
struck. In Figure 1, for instance, the model predicts a low-pitched thud sound when the drumstick
strikes dirt, and a high-pitched rattle when it strikes ivy.

Physical interactions like these, however, represent only a fraction of the sounds we experience.
Often what we hear instead are ambient sounds, such as the babble of a busy café, or the rustle of
trees in the wind. In follow-up work [14], I showed that ambient sounds provide a “free” source of
supervision for teaching visual models about objects and scenes. I trained a computer vision model to
predict audio statistics from video frames, using a large dataset of unlabeled internet videos. This is
a task that can only be solved by recognizing objects that make sound. A model that solves it will
also have to generalize over a wide range of visual transformations. For instance, we could change an
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Figure 3: In [10], we learn an audio-visual representation that (a) localizes sound sources, (b) can be used to
separate on- and off-screen sound: e.g., the on-screen speech of a diplomat and off-screen speech of a translator.

image drastically—dim the lighting, rotate the camera, move the objects around—without affecting
the ground-truth sound that the model must predict.

Through this process, our model learned features that were useful for solving downstream object-
and scene-recognition tasks. It also learned an internal representation that coded for objects that are

Figure 2: Our audio prediction model learns a
representation that codes for sound-making ob-
jects. These image regions each produce a strong
activation for an internal unit of the network [14].

associated with characteristic sounds, such as faces,
crowds, and waterfalls (Figure 2). I’ve been excited
to see that researchers have taken inspiration from our
approach, and have used similar ideas to obtain the state-
of-the-art unsupervised features for several tasks [1, 8].

Learning multisensory representations More
recently, I’ve been developing models that not only learn
from cross-modal correlations, but that also fuse infor-
mation from multiple modalities when making decisions.
While we normally think of vision and hearing as sepa-

rate systems, psychologists suggest they are closely intertwined: the motion of a speaker’s lips, for
instance, can profoundly change what we hear them say [9]. Despite these findings, today’s perceptual
models tend to be unimodal—there are vision models, hearing models, and not much in between.
In [10], I showed that we could learn a video representation that fuses these two sensory streams by
finding correspondences between visual motion and audio events. To obtain this correspondence, the
model predicts whether the visual and audio streams of a video are temporally aligned, or have been
synthetically misaligned by an adversary. The model learns to localize sound sources such as moving
lips or axes striking wood (Figure 3(a)). It also learns features that allow us to solve audio-visual
learning tasks, such as action recognition, with high accuracy.

Visual speech understanding As an application of these techniques, I have been developing
methods for understanding the visual aspects of speech. I created a method for separating on- and
off-screen sound sources—for example, removing a translator’s voice from a foreign official’s speech
(Figure 3(b)). The model, which was based on my multisensory video representation [10], was the
first method that worked successfully on real-world video footage, e.g. television broadcasts. I’ve
also recently studied how humans gesture when they speak [? ]. My collaborators and I created a
“person-specific” gesturing model that, after analyzing hours of footage of a person talking, predicts how
they will move their arms during speech. Given only an audio clip, our model predicts the speaker’s
body pose, and synthesizes a plausible video that depicts them speaking.

Grasping with vision and touch When humans grasp objects, they use many modalities:
vision, for example, is useful for planning our grasp, and touch for positioning our hands and selecting
which forces to exert. I’ve explored this idea by developing methods for multisensory grasping.
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Figure 4: We trained a
robot to grasp objects
using vision and touch.

In [18], my collaborators and I showed that we could infer a fairly subtle mate-
rial property—how hard or soft an object is—by applying video convolutional
networks to optical touch sensing. Then, in a series of papers [2, 3], we applied
similar learning methods to robotic grasping (Figure 4). We trained a robot to
lift objects by “self-supervised” trial and error: we placed objects on a table,
and had the robot repeatedly attempt to lift them, recording which of these
attempts were successful and which failed. From these outcomes, we learned a
policy that tells the robot which actions it should execute to lift new objects.
For example, if the robot determines from touch that it is only gripping an
object by the very tips of its fingers, the policy guides it down (toward the
object center) to improve its grip.

2 Other work

My other work deals with creating 3D representations, and detecting fake images.

3D reconstruction To interact with the world, we need to know not just what is in a scene,
but what is where. In my work on grasping (Figure 4), this what-is-where knowledge was acquired
implicitly—lacking a 3D model of the world, the robot had to learn how to move its gripper in space via
trial and error. In another line of work, I’ve developed methods that, instead, create and use explicit 3D
representations. My work combines multi-view reconstruction methods, which use projective geometry
to infer highly accurate depth (but only sparsely), and single-view methods, which recognize the dense
shape of objects by their appearance (but only coarsely).

In [4], my collaborators and I proposed a method for estimating camera pose from photos, known
as the structure from motion problem. We showed that the problem could be formulated as a graphical
model, in a way that let us perform efficient inference with discrete optimization methods. This
formulation allowed us to incorporate single-view cues, such as vanishing points, as well as information
from other sensors, like GPS. To support work in reconstruction, my collaborators and I created a
dataset containing 3D reconstructions of large indoor spaces [16], such as apartments, hotel rooms, and
offices. I then used this dataset to train a 3D reconstruction method that combines cues from single-view
and multi-view reconstruction. My method recognizes image patches that have a distinctive 3D shape,
such as corners and folds [11], while using cues from multi-view geometry to resolve ambiguities.

Figure 5: Two views of a camouflaged box. Its sur-
face texture makes it hard to see from many of the
viewpoints that someone might observe it from.

Visual perception of 3D structure Once we
have a 3D model of a scene, we can use it to solve
graphics and visualization problems. In [12], I used
these models to create a computational model of
camouflage. While computer vision provides meth-
ods for detecting objects, camouflage does the op-
posite. We posed what we called the object non-
detection problem: creating object whose appear-
ance is not detectable. I created a texture synthesis
method for texturing a 3D object that, when placed
into a scene, will be hard for humans to see from
every viewpoint they could observe it from. One object that my method created, a box hidden on a
bookshelf, is shown in Figure 5.

Later, I used 3D models to create visualizations. In [17], my collaborators and I designed a stereo
matching algorithm for re-rendering scenes from novel viewpoints without blurring artifacts, and in [19]
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Figure 6: The image on the left was created by a computer graphics algorithm [6] that spliced together the
two images on the right. Our forensics method [7] detects this manipulation by finding inconsistency in the
properties of the camera that purportedly took the photo.

we created 3D motion sculpture visualizations that reveal the subtle motions of a human body as it
performs a complicated action, such as running or dancing.

Detecting fake images Computer vision researchers face an ethical dilemma: as our methods get
better, so too do the tools for malicious image manipulation. While malicious editing was once only
the domain of the highly skilled—dictators, spy agencies, and unscrupulous photojournalists—recent
advances have made it possible to create fake images with only basic computer skills, and social
networks have made it easier than ever to disseminate them. One might have hoped that these same
advances could also be used to detect fake images, but this hasn’t been the case: the space of fake
images is so vast and diverse that it’s not clear how to obtain a representative dataset of “ground
truth” fake images to train supervised learning methods. And whatever methods we do deploy will
quickly become obsolete as our adversaries adapt!

To address these problems, I’ve begun studying unsupervised image forensics methods. As an initial
step, my collaborators and I created a method that detects fake images without any training examples
of fake images [7] (Figure 6). Our model learns to predict photographic metadata (EXIF tags) from
images—e.g. camera model, compression scheme—and flags photos as being fake if these predictions
are inconsistent, such as when a photo’s statistics look more like a mixture of two camera models than
one. Our method was the first unsupervised forensics method to work on “in-the-wild” manipulations,
and it outperformed prior methods trained on labeled data.
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